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Abstract
The Navier equation of equilibrium for the circumferential displacement uθ =

uθ(r) in a hollow circular cylinder subjected to azimuthal shear is of the same
equidimensional type as the corresponding equation for the radial displacement
ur = ur(r) in the Lamé problem of radial loading of a hollow cylinder. The
maximum shear stress in both problems varies as 1/r2, where r is the radial
distance from the central axis of the cylinder, and is given by analogous ex-
pressions, which implies that the onset of plastic deformation is also defined
by analogous expressions. Different stress functions for the Lamé problem are
discussed in the context of a non-standard form of the compatibility condition,
which yields a third-order differential equation for the Airy stress function,
rather than the common fourth-order biharmonic differential equation. Two
types of boundary conditions are considered for both the azimuthal shear and
the radial loading. A simple deduction of the solution for one type of bound-
ary conditions from the solution for the other type is discussed. An analysis
of an axisymmetric problem in which the radial and circumferential displace-
ments both occur simultaneously is presented by considering a thin circular
disk mounted to a rigid shaft which rotates nonuniformly around its axis of
symmetry.
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1. INTRODUCTION

The Navier equations of equilibrium for plane strain isotropic elasticity in which the
non-vanishing radial and circumferential displacements ur and uθ depend only on
the radial coordinate r follow from general three-dimensional equations listed, e.g.,
in [1]-[8], and are given by

(λ+ 2µ)
(
∇2ur −

ur
r2

)
= 0, µ

(
∇2uθ −

uθ
r2

)
= 0, (1)

where λ and µ are the Lamé elastic constants, and ∇2 = d2/dr2 + r−1d/dr is the
Laplacian operator. Thus, both equations are the second-order ordinary differential
equations of the Cauchy-Euler equidimensional type,

d2ur
dr2

+
1

r

dur
dr

− ur
r2

= 0 ,
d2uθ
dr2

+
1

r

duθ
dr

− uθ
r2

= 0 . (2)

They can be rewritten as

d

dr

(
dur
dr

+
ur
r

)
= 0 ,

d

dr

(
duθ
dr

+
uθ
r

)
= 0 , (3)

with their first integrals

dur
dr

+
ur
r

= 2c1 ,
duθ
dr

+
uθ
r

= 2k1 , (4)

where 2c1 and 2k1 are the integration constants. Upon second integration, the general
expressions for the displacements are

ur = c1r +
c2
r
, uθ = k1r +

k2
r
, (5)

with c2 and k2 representing the second pair of integration constants. The equality
du/dr + u/r ≡ (1/r)d(ru)/dr, for both ur and uθ, enables in (4) their direct inte-
gration.

The duality of the differential equations (2) and the expressions for the displace-
ments (5) of these two basic but fundamentally important isotropic elasticity prob-
lems does not hold for inhomogeneous or anisotropic elastic materials. For example,
for anisotropic material which is at any point of a cylinder locally orthotropic, with
the principal axes of orthotropy in the (r, θ, z) directions [9, 10], the governing dif-
ferential equation for circumferential displacement in the azimuthal shear problem is
still given by the second equation in (2) or (4), and thus uθ is still given by the second
expression in (5), because the azimuthal shear is a statically determinate problem,



and the only change in the analysis is to replace µ with µrθ. On the other hand,
for the Lamé problem the governing differential equation for the radial displacement
becomes

d2ur
dr2

+
1

r

dur
dr

− n2
ur
r2

= 0 , n2 =
Eθ

Er

1− νrzνzr
1− νθzνzθ

, (6)

with the obvious notation for different elastic moduli and Poisson’s ratios of or-
thotropic material. Consequently, upon integration, the expression for the radial dis-
placement is

ur = c1r
n +

c2
rn
, (7)

which replaces the first expression in (5) and reduces to it in the case of isotropic
material (n = 1).

2. FIRST-ORDER DIFFERENTIAL EQUATION FOR RADIAL DISPLACEMENT

The Cauchy equilibrium equation in terms of radial and circumferential stresses for
the Lamé problem of radial loading of a hollow cylinder is

dσrr
dr

+
σrr − σθθ

r
= 0 . (8)

Assuming isotropy and plane strain conditions (the strain ϵzz = 0), the stresses are
related to strains by generalized Hooke’s law

σrr = 2µϵrr + λ(ϵrr + ϵθθ) , σθθ = 2µϵθθ + λ(ϵrr + ϵθθ) . (9)

The strains can be expressed in terms of the radial displacement by

ϵrr =
dur
dr

, ϵθθ =
ur
r
, (10)

with the corresponding strain compatibility condition

r
dϵθθ
dr

= ϵrr − ϵθθ . (11)

To express the compatibility condition (11) in terms of stresses, we first use the
plane strain Hooke’s law to conveniently write

ϵθθ =
1

2µ
[(1− ν)(σrr + σθθ)− σrr] , ϵrr − ϵθθ =

1

2µ
(σrr − σθθ) , (12)

where ν denotes the Poisson ratio of isotropic elastic material. By substituting (12)
into (11), and by using the equilibrium equation (8), the compatibility condition (11)
is expressed in terms of stresses as

d

dr
(σrr + σθθ) = 0 . (13)



Thus,
σrr + σθθ = 2m1 , m1 = const. , (14)

i.e., the hydrostatic part of stress is uniform throughout the cylinder and qual to 2(1+

ν)m1/3, recalling that for the plane strain σzz = ν(σrr + σθθ). See also [11, 12].
Equation (14) can be used to re-derive the first-order differential equation for the

radial displacement ur. Indeed, by substituting (9) and (10) into (14), it follows that

dur
dr

+
ur
r

= 2c1 , 2c1 =
m1

λ+ µ
=

(1− 2ν)m1

µ
, (15)

reproducing the first equation in (4). Consequently, upon integration, the radial dis-
placement becomes

ur = c1r +
c2
r
, (16)

which is the first expression in (5). The strains follow from (10) and the stresses from
(9). They are given by

ϵrr = c1 −
c2
r2
, ϵθθ = c1 +

c2
r2
, (17)

σrr = 2µ

(
c1

1− 2ν
− c2
r2

)
, σθθ = 2µ

(
c1

1− 2ν
+
c2
r2

)
. (18)

In the case of plane stress (σzz = 0), the denominator 1 − 2ν is replaced with
(1 − ν)/(1 + ν). In this case, by Hooke’s law, the out-of-plane longitudinal strain
ϵzz = ∂uz/∂z and the displacement are

ϵzz = − ν

1− ν
(ϵrr + ϵθθ) = − 2ν

1− ν
c1 , uz = − 2ν

1− ν
c1z , (19)

with uz(z = 0) = 0 by symmetry around the mid-plane z = 0.

2.1. Stress function

In the stress formulation of the boundary-value problem, it is common to intro-
duce the stress function φ = φ(r), such that (e.g., [4], p. 343)

σrr =
φ

r
, σθθ =

dφ

dr
. (20)

The Cauchy equilibrium equation (8) is then identically satisfied, as can be recog-
nized most directly by rewriting (8) as d(rσrr)/dr = σθθ. The compatibility condi-
tion (14) defines the differential equation for φ,

dφ

dr
+
φ

r
= 2m1 , m1 = const. (21)



Its solution is
φ = m1r +

m2

r
, (22)

where m1 and m2 are constants. Thus, from (20) and (22), the stresses become

σrr = m1 +
m2

r2
, σθθ = m1 −

m2

r2
. (23)

Because by the plane strain Hooke’s law,

ϵθθ =
1

2µ
[σθθ − ν(σrr + σθθ)] , (24)

from ur = rϵθθ it follows that the radial displacement is

ur =
1

2µ

[
(1− 2ν)m1 −

m2

r

]
. (25)

By comparing (25) with (16), the constants m1 and m2 are related to c1 and c2 by
m1 = 2µc1/(1− 2ν) and m2 = −2µc2.

Remark 1: An alternative stress function ψ = ψ(r) can be introduced by requir-
ing that

σrr =
dψ

dr
, σθθ =

ψ

r
, (26)

because then both the Cauchy equilibrium equation (8) and the compatibility condi-
tion (13) reduce to the second-order equidimensional equation

d2ψ

dr2
+

1

r

dψ

dr
− ψ

r2
= 0 , (27)

whose solution is
ψ = m1r −

m2

r
, (28)

in duality with (22).

Remark 2: If the Airy stress function Φ = Φ(r) is introduced such that, e.g.,
[1]-[8],

σrr =
1

r

dΦ

dr
, σθθ =

d2Φ

dr2
, (29)

the Cauchy equilibrium equation (8) is identically satisfied, while the compatibility
condition (13) becomes a third-order differential equation d(∇2Φ)/dr = 0, i.e.,

d3Φ

dr3
+

1

r

d2Φ

dr2
− 1

r2
dΦ

dr
= 0 . (30)



Its general solution, apart from a constant term, is

Φ =
1

2
m1r

2 +m2 ln r . (31)

In retrospect, by comparing (29) with (20), or (31) with (22), the stress functions φ
and Φ are obviously related by φ = dΦ/dr.

Remark 3: If one would require Φ to be a biharmonic function (∇4Φ = 0), as in
non-axisymmetric two-dimensional elasticity, i.e.,

d4Φ

dr4
+

2

r

d3Φ

dr3
− 1

r2
d2Φ

dr2
+

1

r3
dΦ

dr
= 0 , (32)

then its general solution would be, apart from a constant term,

Φ =
1

2
m1r

2 +m2 ln r +m3r
2 ln r . (33)

The sum of normal stresses corresponding to (33) is

σrr + σθθ = 2m1 + 4m3(1 + ln r) , (34)

which is not constant, as required by (14), unlessm3 = 0. Thus, the biharmonic term
r2 ln r does not give an admissible stress field for axisymmetric stress field with ur =
ur(r) and uθ = 0, because the corresponding strains do not satisfy the compatibility
condition (11), i.e., Φ = r2 ln r does not satisfy the third-order differential equation
for Φ, given by (30). If the stress distribution is axisymmetric, but the displacements
are not, as occurs in pure bending of circular rings, or the presence of initial stresses
in a closed ring produced by a disclination-type cut and weld operation (e.g., [1], p.
78-80; [2], p. 244-245; [5], p. 210-212) the constant m3 ̸= 0 and the compatibility
condition is indeed the requirement that σrr + σθθ is a harmonic function, ∇2(σrr +

σθθ) = 0, leading to biharmonic equation for the Airy stress function (∇4Φ = 0),
and thus its contribution proportional to r2 ln r. The use of Love’s and Boussinesq’s
displacement potentials to solve the Lamé problem has been discussed in [13]. The
Lamé strain potential χ = χ(r, z), introduced such that ∇2χ = const. and u = ∇χ,
is χ = c1r

2/2 + c2 ln r+ c3z
2/2, which reproduces (16) for ur = ∂χ/∂r, and gives

uz = ∂χ/∂z = c3z, with c3 = 0 for plane strain, and c3 related to c1 and ν as in (19)
for plane stress.

3. FIRST-ORDER DIFFERENTIAL EQUATION FOR CIRCUMFERENTIAL DIS-
PLACEMENT

In contrast to a statically indeterminate Lamé problem, the azimuthal shear of a hol-
low circular cylinder is a statically determinate problem, because the Cauchy equi-



librium equation,
d

dr

(
r2σrθ

)
= 0 , (35)

involves only the shear stress σrθ, which is, by integration,

σrθ =
k

r2
, k = const. (36)

The constant k can be related to the applied torque T which produces the azimuthal
shear by the moment equilibrium condition

T = 2πr2σrθ = 2πk ⇒ k =
T

2π
. (37)

Furthermore, from Hooke’s law the shear stress is related to shear strain by

σrθ = 2µϵrθ , ϵrθ =
1

2

(
duθ
dr

− uθ
r

)
. (38)

Consequently, by equating (36) and (38), the first-order differential equation for the
displacement uθ becomes

duθ
dr

− uθ
r

=
k

µr2
. (39)

Upon integration, this gives

uθ = k1r +
k2
r
, k2 = − k

2µ
, (40)

confirming the second expression in (5).
It is noted that that the displacement uθ satisfies both the first-order differential

equation in (4) and the first-order differential equation (39). As a consequence, uθ
also satisfies the second-order differential equation d2uθ/dr

2 = 2k2/r
3. The equiv-

alency of the second equation in (4) and (39) follows by rewriting (39) as

duθ
dr

+
uθ
r

=
k

µr2
+ 2

uθ
r
. (41)

Both sides of (41) must be equal to 2k1 in order that both so-obtained equations
have the same solution uθ = k1r + k2/r, with k2 = −k/2µ. We also note that the
Airy stress function Φ for azimuthal shear, introduced such that σrθ = r−2dΦ/dθ, is
Φ = kθ, because then σrθ is independent of θ.



4. AZIMUTHAL SHEAR OF A HOLLOW CYLINDER

Figure 1a shows a hollow circular cylinder whose inner boundary r = a is fixed,
while its outer boundary r = b is bonded to a rigid casing subjected to a torque T
(per unit length of the cylinder) which gives rise to counter-clockwise rotation of
the casing by a small angle Ω. Such loading of a hollow cylinder is referred to as
azimuthal (or circular) shear (shearing), frequently studied in the past in the case of
large elastic deformations of rubber-like materials, e.g., [14]-[18], where the interest
was, inter alia, in the build-up of normal stresses accompanying the shear stress.
For infinitesimal elastic strains, the normal stress effect is absent and the analysis
becomes elementary. The only displacement component in cylindrical coordinates is
the circumferential displacement uθ = uθ(r), which is given by (40). The constants
k1 and k2 are determined from the boundary conditions uθ(a) = 0 and uθ(b) = bΩ,
i.e.,

k1a
2 + k2 = 0 , k1b

2 + k2 = b2Ω , (42)

which gives

k1 =
b2Ω

b2 − a2
, k2 = −a2k1 . (43)

Consequently, the circumferential displacement becomes

W

a
b

r

uq

a
b

r

uq

W

(a) (b)

Figure 1: Azimuthal shear of a hollow circular cylinder in which (a) the outer bonded
casing is given a rotation Ω while the inner bonded cylinder is kept fixed, and (b) the
inner cylinder is given a rotation Ω while the outer casing is fixed. The inner and
outer radii of the hollow cylinder are a and b, and uθ = uθ(r) is the circumferential
displacement.



uθ =
b2Ω

b2 − a2

(
r − a2

r

)
. (44)

The shear stress is σrθ = 2µϵrθ, where, from (38) and (40), the shear strain is
ϵrθ = −k2/r2. Thus,

σrθ = 2µ
b2Ω

b2 − a2
a2

r2
. (45)

The stresses at the inner and outer boundaries are

σrθ(a) = 2µ
b2Ω

b2 − a2
, σrθ(b) = 2µ

a2Ω

b2 − a2
. (46)

The corresponding torque at any radius a ≤ r ≤ b is

T = 2πr2σrθ = 4πµ
a2b2Ω

b2 − a2
. (47)

If, instead of the displacement bΩ, the shear stress τb = σrθ(b) is prescribed at the
boundary r = b, the expressions for uθ(r) and σrθ(r) follow immediately, because
from the second expression in (46),

2µ
a2Ω

b2 − a2
= τb . (48)

By substituting (48) into (44) and (45), it follows that

uθ =
τa
2µ

(
r − a2

r

)
, σrθ = τa

a2

r2
, (49)

where τa = (b2/a2)τb is the reactive (clockwise) shear stress at the inner boundary,
τa = σrθ(a). The shear stress τa becomes large as a becomes small relative to b, i.e.,
it is (b/a)2 greater than the applied stress τb.

4.1. Deduction of the solution for the second type of boundary conditions

If the boundary conditions are as shown in Fig. 1b, i.e., if the outer boundary of
the cylinder is fixed, while the inner boundary rotates in a counter-clockwise direction
by Ω, the solution can be readily derived by following the same steps as described
above. However, because of circular geometry and the duality of boundary condi-
tions in Fig. 1a and 1b, the solution to the problem in Fig. 1b can be recognized
immediately from the solution to the problem in Fig. 1a by interchanging a and b in
the latter expressions. Thus, from (43) and (44) it follows that

k1 =
a2Ω

a2 − b2
, k2 = −b2k1 , (50)



uθ =
a2Ω

a2 − b2

(
r − b2

r

)
. (51)

The shear stresses follow from from (45) and (46), and are given by

σrθ = 2µ
a2Ω

a2 − b2
b2

r2
, (52)

σrθ(b) = 2µ
a2Ω

a2 − b2
, σrθ(a) = 2µ

b2Ω

a2 − b2
. (53)

While uθ(r) in (51) is positive, the shear stress σrθ in (52) is negative, i.e., clockwise
on the outer surface r = const. The counter-clockwise torque applied to the bonded
rigid cylinder of radius a is T = 2πr2|σrθ|, giving the same expression as in (47).

If, instead of the displacement aΩ, the counter-clockwise shear stress τa =

−σrθ(a) is prescribed at the inner boundary r = a, the expressions for uθ(r) and
σrθ(r) follow from (49) by replacing a with b, and τa with −τb. This gives

uθ = − τb
2µ

(
r − b2

r

)
, σrθ = −τb

b2

r2
, (54)

where τb = (a2/b2)τa is the magnitude of the reactive shear stress at the outer bound-
ary, τb = −σrθ(b).

4.2. Relative rotation

If a bonded rigid cylinder of radius a rotates clockwise (rather than counter-
clockwise) by Ω, the angle Ω in expressions (50)–(53) is replaced with −Ω. In this
case, σrθ is positive, while uθ becomes negative and differs from uθ of the problem
in Fig. 1a by the rotation-induced rigid-body displacement Ωr. Indeed, denoting uθ
from (44) by uIθ , and −uθ from (51) by uIIθ , we have

uIθ =
b2Ω

b2 − a2

(
r − a2

r

)
, uIIθ = − a2Ω

a2 − b2

(
r − b2

r

)
, (55)

and one can readily verify that uIIθ = uIθ − Ωr.
One can also determine the rotations of the rigid casings at r = a and r = b

required in order that uθ(r0) = 0, for an arbitrary a ≤ r0 ≤ b. Denoting by Ωa the
clockwise rotation of the inner casing, and by Ωb the counter-clockwise rotation of
the outer casing, they can be related to the previously introduced angle of rotation Ω

by requiring that Ωa + Ωb = Ω (relative rotation of two casings), and by using the
displacement expression

uθ =
τ0
2µ

(
r − r20

r

)
=

a2b2Ω

b2 − a2
1

r20

(
r − r20

r

)
, (56)



where τ0r20 = τaa
2 = τbb

2. The shear stress is σrθ = τ0r
2
0/r

2, where τ0 = σrθ(r0).
Imposing the conditions

aΩa = −uθ(a) =
a2b2Ω

b2 − a2
r20 − a2

ar20
, bΩb = uθ(b) =

a2b2Ω

b2 − a2
b2 − r20
br20

, (57)

it follows that

Ωa =
b2Ω

r20

r20 − a2

b2 − a2
, Ωb =

a2Ω

r20

b2 − r20
b2 − a2

. (58)

5. LAMÉ PROBLEM OF A HOLLOW CYLINDER

Figure 2a shows a hollow circular cylinder whose inner boundary r = a is fixed and
its outer boundary r = b is given a small outward radial displacementUb. Plane strain
is assumed and the elastic material is compressible (ν < 1/2). The only displacement
component in the cylinder is the radial displacement ur = ur(r), which is given by
(16). The constants c1 and c2 are determined from the boundary conditions ur(a) = 0

and ur(b) = Ub, i.e.,

c1a
2 + c2 = 0 , c1b

2 + c2 = bUb , (59)

which gives

c1 =
bUb

b2 − a2
, c2 = −a2c1 . (60)

Consequently, the radial displacement becomes

ur =
bUb

b2 − a2

(
r − a2

r

)
. (61)

This is an analogous expression to (44) for the circumferential displacement uθ of
azimuthal shear problem, with Ub replacing bΩ.

The radial and circumferential stresses are obtained by substituting c1 and c2
from (60) into (18),

σrr = 2µ
bUb

b2 − a2

(
1

1− 2ν
+
a2

r2

)
, σθθ = 2µ

bUb

b2 − a2

(
1

1− 2ν
− a2

r2

)
. (62)

The maximum shear stress at an arbitrary a ≤ r ≤ b is

τmax(r) =
1

2
(σrr − σθθ) = 2µ

bUb

b2 − a2
a2

r2
. (63)

This is an analogous expression to (45) for the shear stress of azimuthal shear prob-
lem, with Ub replacing bΩ. Thus, in the case of the Tresca yield criterion [3, 8], the
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b
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Figure 2: Radial loading of a hollow circular cylinder in which (a) the outer boundary
r = b is given an outward radial displacement Ub while the inner bonded cylinder is
kept fixed, and (b) the inner boundary r = a is given an outward radial displacement
Ua while the outer casing is fixed. The radial displacement at an arbitrary r is denoted
by ur = ur(r).

onset of plastic deformation in two problems occurs at the critical angle of rotation
and critical radial displacement given by

ΩY =

(
1− a2

b2

)
σY
4µ

, UY
b = bΩY , (64)

where σY is the yield stress of the material in uniaxial tension.
The work done by σrr(b) on the displacement Ub, which equals the elastic strain

energy stored in the cylinder (per unit its length), is W = (1/2)2πbσrr(b)Ub. After
using (62), this is

W = 2πµ
b2U2

b

b2 − a2

(
1

1− 2ν
+
a2

b2

)
. (65)



5.1. Deduction of the solution for the second type of boundary conditions

If the boundary conditions are as shown in Fig. 2b, i.e., if the outer boundary
of the cylinder is fixed, while the inner boundary is given an outward radial dis-
placement Ua, the solution can be readily derived by following the same steps as
described above. However, because of circular geometry and the duality of boundary
conditions in Fig. 2a and 2b, the solution to problem in Fig. 2b can be recognized
immediately from the solution to problem in Fig. 2a by interchanging a and b in the
latter expressions and by replacing Ub with Ua. Thus, from (60) and (61),

c1 =
aUa

a2 − b2
, c2 = −b2c1 , (66)

ur =
aUa

a2 − b2

(
r − b2

r

)
. (67)

Expression (67) is an analogous expression to (51) for the circumferential displace-
ment uθ of azimuthal shear problem, with Ua replacing aΩ.

The normal stresses follow directly from (62) by interchanging a and b, and by
replacing Ub with Ua. This gives

σrr = 2µ
aUa

a2 − b2

(
1

1− 2ν
+
b2

r2

)
, σθθ = 2µ

aUa

a2 − b2

(
1

1− 2ν
− b2

r2

)
. (68)

The maximum shear stress at any a ≤ r ≤ b is

τmax(r) =
1

2
(σrr − σθθ) = 2µ

aUa

a2 − b2
b2

r2
, (69)

in duality with (63). Expression (69) is also an analogous expression to (52) for the
shear stress of the azimuthal shear problem, with Ua replacing aΩ. The critical angle
of rotation and critical radial displacement at the onset of plastic deformation are

ΩY =

(
1− a2

b2

)
σY
4µ

, UY
a = aΩY , (70)

in duality with (64).
The work done by σrr(a) on the displacement Ua is W = (1/2)2πa|σrr(a)|Ua,

i.e., after using (67),

W = 2πµ
a2U2

a

b2 − a2

(
1

1− 2ν
+
b2

a2

)
. (71)



5.2. Relationships between the solutions for different boundary conditions

Denoting the radial displacement and the stress components in the problem with
the inner boundary fixed and the outer boundary radially displaced by Ub as uIr , σIrr,
σIθθ, τ Imax, and those in the problem with the outer boundary fixed and the inner
boundary radially displaced by Ua as uIIr , σIIrr , σIIθθ , τ IImax, the following relationships
hold between the two sets of expressions

uIIr |Ua=−(a/b)Ub
= uIr + u0r , (72)

σIIrr |Ua=−(a/b)Ub
= σIrr − p0 , σIIθθ |Ua=−(a/b)Ub

= σIθθ − p0 , (73)

τ IImax|Ua=−(a/b)Ub
= τ Imax . (74)

In these expressions, p0 is a uniform (hydrostatic) pressure applied to both the inner
and outer boundary of a hollow cylinder, producing the inward radial displacement
of magnitude Ub at the outer boundary, i.e.,

p0 =
2µ

1− 2ν

Ub

b
, u0r = −Ub

r

b
. (75)

Because the stresses in problem I and problem II with Ua = −(a/b)Ub differ by a
hydrostatic pressure p0 only, the plastic yield threshold is the same in both problems,
i.e., |UY

a | = (a/b)UY
b , in agreement with (64) and (70).

6. AXISYMMETRIC PROBLEMS WITH RADIAL AND CIRCUMFERENTIAL DIS-
PLACEMENTS

There are axisymmetric problems in which both displacement components, ur(r) and
uθ(r), occur simultaneously. For example if a hollow circular disk is mounted on a
rigid shaft which rotates clockwise with a constant angular acceleration α, then at
the instant when its angular velocity is ω, the governing differential equations for the
normal stresses σrr and σθθ, arising from the centrifugal inertia force due to ω, and
the shear stress σrθ, arising from the circumferential force due to α, are

dσrr
dr

+
σrr − σθθ

r
= −ρω2r ,

dσrθ
dr

+
2σrθ
r

= −ραr , (76)

where ρ is the mass density of the disk. The second equation can be integrated as it
stands to obtain

σrθ =
ραb2

4

(
b2

r2
− r2

b2

)
. (77)



The imposed boundary condition is σrθ(b) = 0. The corresponding circumferential
displacement v = uθ(r) − uθ(a), relative to the surface of the shaft, readily follows
from Hooke’s law and the strain-displacement relation (e.g., [19]) and is given by

v =
ραb3

8µ

[(
a2

b2
+
b2

a2

)
r

b
− b

r
− r3

b3

]
, (78)

with the no-slip boundary condition imposed, v(a) = 0. Expression (77) can also be
derived without solving the differential equation, by using the integrated form of the
dynamic moment equilibrium condition,

2πρα

∫ r

a
ϱ3 dϱ+ 2π[r2σrθ(r)− a2σrθ(a)] = 0 , (79)

where ϱ is a dummy integration variable. Integrating (79) from a to r = b, and using
σrθ(b) = 0, gives the expression for the shear stress at r = a,

σrθ(a) =
ραb2

4

(
b2

a2
− a2

b2

)
. (80)

If (80) is substituted back into (79), the integration from a to r gives the expres-
sion for the shear stress at an arbitrary a ≤ r ≤ b, given by (77). For an analysis of
accelerating solid disk, see [20], p. 88-90.

Regarding the displacement and stresses from the angular velocity, by imple-
menting the strain-displacement relations and the plane stress Hooke’s law into the
first equation in (76) yields the differential equation for ur (e.g., [7, 9])

d2ur
dr2

+
1

r

dur
dr

− ur
r2

= −1− ν

2µ
ρω2r . (81)

Its solution is
ur = c1r +

c2
r

− 1− ν

16µ
ρω2r3 , (82)

generalizing (16). The corresponding strains are

ϵrr =
∂ur
∂r

= c1 −
c2
r2

− 3(1− ν)

16µ
ρω2r2 ,

ϵθθ =
ur
r

= c1 +
c2
r2

− 1− ν

16µ
ρω2r2 .

(83)

The normal stresses then follow by substituting (83) into the plane stress Hooke’s law

σrr =
2µ

1− ν
(ϵrr + νϵθθ) , σθθ =

2µ

1− ν
(ϵθθ + νϵrr) , (84)



which gives

σrr = 2µ

(
1 + ν

1− ν
c1 −

c2
r2

)
− 3 + ν

8
ρω2r2 ,

σθθ = 2µ

(
1 + ν

1− ν
c1 +

c2
r2

)
− 1 + 3ν

8
ρω2r2 ,

(85)

generalizing the plane stress version of (18). Finally, by imposing the boundary con-
ditions ur(a) = 0 and σrr(b) = 0, the integration constants are found to be

c1 =
(1− ν)ρω2

16µ

(1− ν)a4 + (3 + ν)b4

(1− ν)a2 + (1 + ν)b2
,

c2 =
(1− ν)ρω2a2b2

16µ

(1 + ν)a2 − (3 + ν)b2

(1− ν)a2 + (1 + ν)b2
.

(86)

The out-of-plane longitudinal strain ϵzz = ∂uz/∂z follows from (84) or (85) by
using Hooke’s law,

ϵzz = − ν

E
(σrr + σθθ) = − ν

1− ν
(ϵrr + ϵθθ) = − 2ν

1− ν
c1 −

ν

4µ
ρω2r2 . (87)

The corresponding longitudinal displacement is

uz = −
(

2ν

1− ν
c1 +

ν

4µ
ρω2r2

)
z , (88)

such that uz(z = 0) = 0.



6.1. Stress-based approach

The displacement and stress expressions corresponding to ω were derived in the
previous section by the displacement-based approach. Alternatively, they can be de-
rived by the stress-based approach by introducing the stress function φ = φ(r) such
that, e.g. [4], p. 335,

σrr =
φ

r
, σθθ =

dφ

dr
+ ρω2r2 . (89)

The Cauchy equation of motion in (76) is then identically satisfied, while the com-
patibility condition d(rϵθθ)/dr = ϵrr becomes

d

dr
(σrr + σθθ) = −(1 + ν)ρω2r , (90)

generalizing (21). The substitution of (89) into (90) gives a differential equation for
φ,

d

dr

(
dφ

dr
+
φ

r

)
= −(3 + ν)ρω2r . (91)

Its solution is
φ = m1r +

m2

r
− 3 + ν

8
ρω2r3 , (92)

reducing to (22) when ω = 0.
We note that a rotating disk is, strictly speaking, a three-dimensional elasticity

problem in which σrr and σθθ also depend on the z coordinate, orthogonal to the
plane of the disk. For thin disks this dependence on z is mild and for most practical
purposes can be safely ignored, e.g., [1], p. 389; [8], p. 209. Also, the z-dependent
stress-correction term is self-equilibrating over the thickness of the disk. The shear
stress expression (77) due to the angular acceleration α is, on the other hand, exact.

6.2. Maximum shear stress in a disk due to azimuthal shear vs. spinning

It may be of design interest to evaluate and compare the displacement and shear
stress distributions in a stationary disk subjected to azimuthal shear and a rotating
disk subjected to angular acceleration, under the condition of equal circumferential
displacements at the outer boundary of the disk relative to the inner boundary. By
using (44) and (78), the condition for equal relative displacements uΩθ (b) = vα(b)

gives the relationship between α and Ω,

ρα =
8µa2Ω

(b2 − a2)2
. (93)
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Figure 3: (a) The normalized displacements due to azimuthal shear Ω and angular
acceleration α of a thin disk vs. r/a, in the case when α and Ω are related by the
condition uΩθ (b) = vα(b). (b) The corresponding variations of the normalized shear
stresses.

When (89) is substituted into (44) and (78), the normalized displacements are found
to be

uΩθ
bΩ

=
a/b

1− (a/b)2

(r
a
− a

r

)
,

vα

bΩ
=

(a/b)3

[1− (a/b)2]2

[(
a2

b2
+
b2

a2

)
r

a
−
(
b

a

)2 a

r
−

(a
b

)2 (r
a

)3
]
.

(94)

They are plotted in Fig. 3a in the case b = 2a. The nonlinearity of uΩθ /bΩ becomes
more pronounced for smaller values a/b, and the two curves get closer to each other
with the decrease of a/b. Furthermore, when (93) is substituted into (45) and (77),
the normalized shear stresses become

σΩrθ
σΩrθ(a)

=
a2

r2
, σΩrθ(a) =

2µb2Ω

b2 − a2
,

σαrθ
σΩrθ(a)

=
b2

b2 − a2
a2

r2

(
1− r4

b4

)
.

(95)

Their plots are shown in Fig. 3b. The ratio of the maximum shear stresses is

σαrθ(a)

σΩrθ(a)
= 1 +

a2

b2
,

σΩrθ(b)

σΩrθ(a)
=
a2

b2
. (96)

Thus, for b = 2a, the maximum shear stress due to angular acceleration is greater by
25% than the maximum shear stress due to static azimuthal shear, under the imposed



condition of equal maximum relative displacements. The curves get closer to each
other with the decrease of a/b. Similar, albeit a somewhat more tedious analysis
proceeds to compare the maximum shear stresses due to radial displacement Ub and
angular velocity ω, when it is required that the radial displacements at r = b are equal
in both cases, which gives

ρω2 =
8µUb/b

1− ν

(1− ν)a2 + (1 + ν)b2

(b2 − a2)2
. (97)

7. CONCLUSION

The governing equation for the circumferential displacement uθ = uθ(r) in a hollow
circular cylinder subjected to azimuthal shear is of the same type as the governing
equation for the radial displacement ur = ur(r) due to radial stretching of a hol-
low cylinder (Lamé problem). Both equations are the second-order equidimensional
ordinary differential equations, whose solution is a linear combination of r and 1/r

terms, where r is the radial distance from the center of the cylinder. The maximum
shear stresses in both problems vary as 1/r2 and are given by analogous expressions,
which implies that the plastic yield threshold is also defined by analogous expres-
sions. The compatibility condition in terms of stresses for the Lamé problem is given
by the condition d(σrr + σθθ)/dr = 0, rather than the condition that the sum of
two in-plane normal stresses is a harmonic function, as in general two-dimensional
elasticity. As a consequence, the Airy stress function is governed by a third-order dif-
ferential equation, rather than the usual biharmonic differential equation. Two types
of boundary conditions are considered for both azimuthal shear and radial loading of
a hollow cylinder. A simple deduction of the solution for one type of boundary con-
ditions from the solution for the other type is described. An analysis of axisymmetric
problems in which the radial and circumferential displacements occur simultaneously
is presented by considering a thin circular disk mounted to a rigid shaft which rotates
around its axis with nonuniform angular velocity.
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Vlado A. LUBARDA, Marko V. LUBARDA

DUALNOST AZIMUTALNOG SMICANJA I RADIJALNOG
OPTEREĆENJA CILINDRIČNE CIJEVI

I VEZANI PROBLEMI

S a ž e t a k

Navijeova jednačina ravnoteže za tangencijalno pomjeranje uθ = uθ(r) u cilindričnoj
cijevi podvrgnutoj azimutalnom smicanju istog je ekvidimenzionalnog oblika kao
odgovarajuća jednačina za radijalno pomjeranje ur = ur(r) u Lameovom problemu
cilindrične cijevi pod dejstvom radijalnog opterećenja. Maksimalni smičući naponi
u oba problema mijenjaju se kao 1/r2, gdje r označava radijalno odstojanje od cen-
tralne ose cilindra. Njihovi izrazi su analogni, što ima za posljedicu da su i izrazi
za početak plastične deformacije u cilindru takod̄e analogni. Različite naponske
funkcije za Lameov problem su uvedene i diskutovane u kontekstu nestandardnog
oblika uslova kompatibilnosti, zbog kog Erijeva funkcija napona zadovoljava difer-
encijalnu jednačinu trećeg reda, umjesto standardnu biharmonijsku jednačinu opšteg
dvodimenzionalnog problema izotropne elastičnosti u odsustvu zapreminskih sila.
Dvije vrste graničnih uslova su analizirane i za azimutalno smicanje i za radijalno
opterećenje cilindra. Rješenje za jednu vrstu graničnih uslova proizilazi direktno iz
rješenja za drugu vrstu jednostavnim transformacijama, bez rješavanja diferencijal-
nih jednačina pri novim graničnim uslovima. Data je i kratka analiza aksisimetričnog
problema rotacije tankog diska učvršćenog za krutu osovinu koja se obrće oko svoje
ose neravnomjernom ugaonom brzinom, u kojem su istovremeno prisutne i radijalna
i tangencijalna komponenta pomjeranja tačaka diska.

Ključne riječi: azimutalno smicanje, cilindar, disk, dualnost, elastičnost, Erijeva napon-
ska funkcija, granični uslovi, Košijeve jednačine, Lameov problem, Navijeove jednačine,
napon, pomjeranje, prag plastičnosti, pritisak, radijalno opterećenje, rotacija, ugaona brzina i
ubrzanje, uslovi kompatibilnosti


